
Presentation of
“Identifying reasons for software 

change using historic databases.”

Lucas Panjer
October 19, 2006



Hypothesis

• Studies have revealed three major causes of 
software change
– Adding features (adaptive)
– Correcting faults (corrective)
– Restructuring (perfective)

• Textual description of a change is tightly 
correlated to type of change described

• Difficulty, size and interval of changes vary 
across different types of changes



Experiment

• Quantitative
– Developed algorithm to classify textual 

change messages into three categories
– Verification: manual survey by developers, 

to classify recent changes
– Test on multiple products



System A

• Characteristics
– 2M LOC
– 3000 files
– 100 modules

• Over last 10 years
– 33171 MR
– Avg 4 deltas / MR



Classification of Maintenance 
Activities

• Normalization (fixes, fixing, fix => fix)
• Word Frequency

– Corrective: correct, fix, problem,…
– Prescriptive: add, new, modify, update,…
– Perfective: cleanup, unneeded, remove,…

• Keyword clustering



Classification Process

• Sequence of rules
1. Inspection class matched first
2. Presence of a keyword classifies a MR
3. Multiple keywords are resolved to the 

most common type



Results

• 45% Adaptive changes
• 34-46% Corrective changes 18-27% of 

LOC
• Inspection changes had largest LOC
• Perfective changes delete most lines / 

delta



Validation

• Develop surveys
• Classify recent MRs
• 5 developers, 30 

MRs each
• Developer and 

classifier agree 61% 
of the time



Change purpose related to size 
and interval

• Most time consuming 
35% of Adaptive 
changes took much 
longer than the 35% 
of Inspection 
changes

• New code (Adaptive) 
and Inspections add 
the most LOC

• Perfective removes 
the most LOC



System A/B Comparison

• System B
– Very similar to System A
– Different developers, 

sub-organization
– Same VCS tool model

• Differences are minimal
• Not explained by 

analysis



Change difficulty

• Corrective changes 
rated hard most 
often

• Size, corrective 
maintenance, 
developer are 
important variables



Contributions
• Predictor shows little variance between 

products
– Indicates that size and interval of change might be 

used to identify the reason for a change
– Indicates a possibility of broader generalization 

(external validity)
• Recommends features for future version 

control systems to aid analysis and recovery 
of software evolution

• Basic knowledge of software change types 
and attributes



Positive
• Able to derive a lot of knowledge out of a 

simple VCS model
• Developed a general technique and 

infrastructure to apply this technique to other 
projects

• Good prediction accuracy
– 61% for type of change based on text



Negative

• Not able to classify all changes
• Limited to large telecom projects in same 

organization
• Much more information usually available 

which was not considered


